This paper considers the efficient minimization of the infinite time average of a stationary ergodic process in the space of a handful of design parameters which affect it. Problems of this class, derived from physical or numerical experiments which are sometimes expensive to perform, are ubiquitous in engineering applications. In such problems, any given function evaluation, determined with finite sampling, is associated with a quantifiable amount of uncertainty, which may be reduced via additional sampling. The present paper proposes a new optimization algorithm to adjust the amount of sampling associated with each function evaluation, making function evaluations more accurate (and, thus, more expensive), as required, as convergence is approached. The work builds on our algorithm for Delaunay-based Derivative-free Optimization via Global Surrogates (∆-DOGS, see JOGO