Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we consider the two-user broadcast channel with security constraints. We assume that a source broadcasts packets to two receivers, and that one of them has secrecy constraints, i.e., its packets need to be kept secret from the other receiver. The receiver with secrecy constraint has full-duplex capability, allowing it to transmit a jamming signal to increase its secrecy. We derive the average delay per packet and provide simulations and numerical results, where we compare different performance metrics for the cases when both receivers treat interference as noise, when the legitimate receiver performs successive decoding, and when the eavesdropper performs successive decoding. The results show that successive decoding provides better average packet delay for the legitimate user. Furthermore, we define a new metric that characterizes the reduction on the success probability for the legitimate user that is caused by the secrecy constraint. The results show that secrecy poses a significant amount of packet delay for the legitimate receiver when either receiver performs successive decoding. We also formulate an optimization problem, wherein the throughput of the eavesdropper is maximized under delay and secrecy rate constraints at the legitimate receiver. We provide numerical results for the optimization problem, where we show the trade-off between the transmission power for the jamming and the throughput of the non-legitimate receiver. The results provide insights into how channel ordering and encoding differences can be exploited to improve performance under different interference conditions.
In this paper, we consider the two-user broadcast channel with security constraints. We assume that a source broadcasts packets to two receivers, and that one of them has secrecy constraints, i.e., its packets need to be kept secret from the other receiver. The receiver with secrecy constraint has full-duplex capability, allowing it to transmit a jamming signal to increase its secrecy. We derive the average delay per packet and provide simulations and numerical results, where we compare different performance metrics for the cases when both receivers treat interference as noise, when the legitimate receiver performs successive decoding, and when the eavesdropper performs successive decoding. The results show that successive decoding provides better average packet delay for the legitimate user. Furthermore, we define a new metric that characterizes the reduction on the success probability for the legitimate user that is caused by the secrecy constraint. The results show that secrecy poses a significant amount of packet delay for the legitimate receiver when either receiver performs successive decoding. We also formulate an optimization problem, wherein the throughput of the eavesdropper is maximized under delay and secrecy rate constraints at the legitimate receiver. We provide numerical results for the optimization problem, where we show the trade-off between the transmission power for the jamming and the throughput of the non-legitimate receiver. The results provide insights into how channel ordering and encoding differences can be exploited to improve performance under different interference conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.