Telemanipulation in power stations commonly require robots first to open doors and then gain access to a new workspace. However, the opened doors can easily close by disturbances, interrupt the operations, and potentially lead to collision damages. Although existing telemanipulation is a highly efficient master–slave work pattern due to human-in-the-loop control, it is not trivial for a user to specify the optimal measures to guarantee safety. This paper investigates the safety-critical motion planning and control problem to balance robotic safety against manipulation performance during work emergencies. Based on a dynamic workspace released by door-closing, the interactions between the workspace and robot are analyzed using a partially observable Markov decision process, thereby making the balance mechanism executed as belief tree planning. To act the planning, apart from telemanipulation actions, we clarify other three safety-guaranteed actions: on guard, defense and escape for self-protection by estimating collision risk levels to trigger them. Besides, our experiments show that the proposed method is capable of determining multiple solutions for balancing robotic safety and work efficiency during telemanipulation tasks.