In this study, the purpose was to investigate the effects with different concentrations of carrageenan (CG, 0–0.30%) on the gel properties and freeze–thaw stability of soy protein isolate (SPI, 8%) cold-set gels. LF-NMR, MRI, and rheology revealed that CG promoted the formation of SPI-CG cold-set gel dense three-dimensional network structures and increased gel network cross-linking sites. As visually demonstrated by microstructure observations, CG contributed to the formation of stable SPI-CG cold-set gels with uniform and compact network structures. The dense gel network formation was caused when the proportion of disulfide bonds in the intermolecular interaction of SPI-CG cold-set gels increased, and the particle size and zeta potential of SPI-CG aggregates increased. SG20 (0.20% CG) had the densest gel network in all samples. It effectively hindered the migration and flow of water, which decreased the damage of freezing to the gel network. Therefore, SG20 exhibited excellent gel strength, water holding capacity, freeze–thaw stability, and steaming stability. This was beneficial for the gel having a good quality after freeze–thaw, which provided a valuable reference for the development of freeze–thaw-resistant SPI cold-set gel products.