Lower urinary tract symptoms are extremely common in people with diabetes and obesity, but the causes are unclear. Furthermore, it has proven difficult to reliably demonstrate bladder dysfunction in diabetic mouse models, thus limiting the ability to gain mechanistic insights. Therefore, the main objective of this experimental study was to characterize diabetic bladder dysfunction in three promising polygenic mouse models of type 2 diabetes. We performed periodic assessments of glucose tolerance and micturition (void spot assay) for eight to twelve months. Males and females and high-fat diets were tested. NONcNZO10/LtJ mice did not develop bladder dysfunction over twelve months. TALLYHO/JngJ males were severely hyperglycemic from two months of age (fasted blood glucose ~550 mg/dL), while females were moderately so. Although males exhibited polyuria, neither they nor the females exhibited bladder dysfunction over nine months. KK.Cg-Ay/J males and females were extremely glucose intolerant. Males exhibited polyuria, a significant increase in voiding frequency at four months (compensation), followed by a rapid drop in voiding frequency by six months (decompensation) which was accompanied by a dramatic increase in urine leakage, indicating loss of outlet control. At eight months, male bladders were dilated. Females also developed polyuria but compensated with larger voids. We conclude KK.Cg-Ay/J male mice recapitulate key symptoms noted in patients and are the best model of the three to study diabetic bladder dysfunction.