Ataxia-telangiectasia (AT) is a human autosomal recessive disease with a pleiotropic phenotype characterized by cerebellar degeneration, immunodeficiency, premature aging, cancer predisposition, and radiation sensitivity. The gene mutated in AT, ATM (for AT-mutated), had been cloned and found to have ionizing radiation and oxidative stressinducible kinase activity. No treatment can stop the progression of the disease. In this study, the complete open-reading frame of ATM cDNA was cloned into a Herpes simplex virus type-1 (HSV-1) amplicon vector (pTO-ATM), and the transduction of cultured AT cells was demonstrated by immunohistochemistry and Western blot analysis. Functional gene expression was evaluated by cell colony-forming assays following exposure to oxidative stress. The survival of AT cells with ATM gene transduction was about 100% higher compared to nontransduced cells after t-butyl hydroperoxide treatments. Next, the normal ATM gene expression in different regions of the rat brain was studied. Immunohistochemistry staining demonstrated weak endogenous ATM protein expression in neurons of the caudate-putamen, with significantly higher levels of expression detected in neurons in other brain regions. Exogenous ATM gene expression from pTO-ATM after viral transduction in the caudateputamen of the adult rat was examined. At 3 days after injection of the pTO-ATM viral vector, abundant positive ATM staining of the neurons was found at the injection sites, in comparison to the controls. These data demonstrate that the relatively large ATM cDNA can be transduced and expressed in vitro and in vivo from an HSV amplicon viral vector. These data provide initial evidence that the replacement of the ATM gene into the cells of AT patients might be possible some day.