KSHV is a human oncogenic virus for which there is no tractable, immunocompetent animal model of infection. MuHV-4, a related rodent gammaherpesvirus, enables pathogenesis studies in mice. In latency, both viruses persist as extrachromosomal, circular genomes (episomes). LANA proteins encoded by KSHV (kLANA) and MuHV-4 (mLANA) contain a C-terminal DNA binding domain (DBD) that acts on the virus terminal repeats to enable episome persistence. mLANA is a smaller protein than kLANA. Their DBDs are structurally conserved but differ strikingly in the conformation of DNA binding. We report a recombinant, chimeric MuHV-4 which contains kLANA in place of mLANA, but in which the DBD is replaced with that of mLANA. Results showed that kLANA functionally accommodated mLANA's mode of DNA binding. In fact, the new chimeric virus established latency in vivo more efficiently than MuHV-4 expressing full-length kLANA.