Deletion of NGG1 in a recombinant Saccharomyces cerevisiae improved xylose utilization and affected transcription of genes related to amino acid metabolism
Abstract:Production of biofuels and biochemicals from xylose using yeast cell factory is of great interest for lignocellulosic biorefinery. Our previous studies revealed that a natural yeast isolate Saccharomyces cerevisiae YB-2625 has superior xylose-fermenting ability. Through integrative omics analysis, NGG1, which encodes a transcription regulator as well as a subunit of chromatin modifying histone acetyltransferase complexes was revealed to regulate xylose metabolism. Deletion of NGG1 in S. cerevisiae YRH396h, whi… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.