T-type Ca2+ channels in thalamocortical (TC) neurons have long been considered to play a critical role in the genesis of sleep spindles, one of several TC oscillations. A classical model for TC oscillations states that reciprocal interaction between synaptically connected GABAergic thalamic reticular nucleus (TRN) neurons and glutamatergic TC neurons generates oscillations through Ttype channel-mediated low-threshold burst firings of neurons in the two nuclei. These oscillations are then transmitted from TC neurons to cortical neurons, contributing to the network of TC oscillations. Unexpectedly, however, we found that both WT and KO mice for Ca V 3.1, the gene for T-type Ca 2+ channels in TC neurons, exhibit typical waxing-and-waning sleep spindle waves at a similar occurrence and with similar amplitudes and episode durations during non-rapid eye movement sleep. Single-unit recording in parallel with electroencephalography in vivo confirmed a complete lack of burst firing in the mutant TC neurons. Of particular interest, the tonic spike frequency in TC neurons was significantly increased during spindle periods compared with nonspindle periods in both genotypes. In contrast, no significant change in burst firing frequency between spindle and nonspindle periods was noted in the WT mice. Furthermore, spindle-like oscillations were readily generated within intrathalamic circuits composed solely of TRN and TC neurons in vitro in both the KO mutant and WT mice. Our findings call into question the essential role of low-threshold burst firings in TC neurons and suggest that tonic firing is important for the generation and propagation of spindle oscillations in the TC circuit. S leep spindles are one type of several rhythmic brain waves detected by electroencephalography (EEG) during normal non-rapid eye movement (NREM) sleep. A spindle consists of characteristic waxing-and-waning field potentials grouped into 7-to 14-Hz oscillations that last for 1-3 s and recur once every 5-10 s in the thalamus and the cortex (1-3). Spindles are also visible under anesthesia, particularly with barbiturates but also with ketamine-xylazine combinations (4, 5). These oscillations are generated in the thalamus as a result of synaptic interactions between inhibitory [i.e., thalamic reticular nucleus (TRN)] neurons and excitatory thalamocortical (TC) neurons, and are propagated to the cortex. Corticothalamic projections back to the thalamus complete the cortico-thalamo-cortical loop.In vivo data suggest that TRN neurons are spindle pacemakers, because spindles can be generated in deafferented TRN neurons (6) but disappear in TC regions after disconnection from TRN neurons (7). However, in vitro data suggest that an intact TC-TRN network is a necessity, because spindles are abolished after disconnection of TC and TRN neurons (8).Two distinct firing patterns, tonic and burst, are displayed by both TRN and TC neurons. Burst firing is mediated by lowthreshold T-type Ca 2+ channels (9). Of the three subtypes of T-type channels, Ca V 3.1 is expre...