The formation of a correctly folded and natively glycosylated HIV-1 viral spike is dependent on protease cleavage of the gp160 precursor protein in the Golgi apparatus. Cleavage induces a compact structure which not only renders the spike capable of fusion but also limits further maturation of its extensive glycosylation. The redirection of the glycosylation pathway to preserve underprocessed oligomannose-type glycans is an important feature in immunogen design, as glycans contribute to or influence the epitopes of numerous broadly neutralizing antibodies.Here we present a quantitative site-specific analysis of a recombinant, trimeric mimic of the native HIV-1 viral spike (BG505 SOSIP.664) compared to the corresponding uncleaved pseudotrimer and the matched gp120 monomer. We present a detailed molecular map of a trimer-associated glycan remodeling that forms a localized subdomain of the native mannose patch. The formation of native trimers is a critical design feature in shaping the glycan epitopes presented on recombinant vaccine candidates.
IMPORTANCEThe envelope spike of human immunodeficiency virus type 1 (HIV-1) is a target for antibody-based neutralization. For some patients infected with HIV-1, highly potent antibodies have been isolated that can neutralize a wide range of circulating viruses. It is a goal of HIV-1 vaccine research to elicit these antibodies by immunization with recombinant mimics of the viral spike. These antibodies have evolved to recognize the dense array of glycans that coat the surface of the viral molecule. We show how the structure of these glycans is shaped by steric constraints imposed upon them by the native folding of the viral spike. This information is important in guiding the development of vaccine candidates.KEYWORDS furin, glycan, glycosylation, human immunodeficiency virus, neutralizing antibodies, oligosaccharides, structure, vaccines T he trimeric envelope (Env) glycoprotein spike of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in mediating host cell infection. Its exposed position on the virus surface also makes it the target for potent, broadly neutralizing antibodies (bNAbs) that are produced in a subset of infected individuals and that now influence the design of Env immunogens intended to induce similar antibody specificities. Env is extensively glycosylated, with glycans contributing to a significant proportion of the glycoprotein's mass (1). The heavily glycosylated surface of Env has been referred to as the "silent face," with the glycans acting to shield the underlying viral protein surface from immune surveillance (2-4). The glycan shield constantly evolves to protect the virus from newly produced neutralizing antibodies. However, compared to the highly diverse protein component of Env, many of the potential