Background
This study employed a bidirectional Mendelian Randomization (MR) approach to explore the causal relationships between Oral Lichen Planus (OLP), diabetes mellitus (DM), and glycemic control. It also aims to identify potential pharmacological and herbal treatments that effectively address both OLP and the metabolic dysfunctions associated with DM.
Methods
This study employs a two-way MR approach to investigate the potential causal relationships between diabetes type and glycated hemoglobin (HbA1c) levels, and the risk of OLP. We analyzed differentially expressed genes from the OLP dataset in the Genomics Expression Omnibus (GEO) database, cross-referencing these with HbA1c-related genes for enrichment analysis. Additionally, the Drug-Gene Interaction Database (DGIdb) and Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) were utilized to assess the effectiveness of specific drugs, herbs, and ingredients in treating OLP while managing blood glucose levels.
Results
The MR analysis revealed a significant association between Type 1 Diabetes mellitus (T1DM) and an increased risk of OLP, unlike Type 2 Diabetes mellitus (T2DM). This finding indicates a unique immunological interaction in T1DM that may predispose individuals to OLP. The drug prediction analysis focused on core targets linked to OLP and HbA1c, evaluating the therapeutic potential of retinoic acid, prednisone, and thalidomide for treating OLP and regulating blood glucose levels. Additionally, herbal medicines such as
Ecliptae herba
and
Amygdalus communis vas
, along with herbal ingredients like quercetin, luteolin, and 17-beta-estradiol, were identified for their anti-inflammatory properties and potential to mitigate metabolic dysfunction in diabetes.
Conclusion
The study highlighted a complex interplay between diabetes and OLP, underscoring the efficacy of integrated therapeutic strategies that target both conditions. The findings suggest that both pharmaceutical and herbal treatments can effectively manage the clinical manifestations of OLP and associated metabolic challenges. This holistic approach to treatment could significantly enhance patient outcomes by addressing the interconnected aspects of these chronic conditions.