Enzymatic hydrolysis is an essential step in the fermentative H 2 production process of lignocellulosic biomass to convert cellulose and hemicellulose into fermentable sugars. The waste from disposable wooden chopsticks (DWC) was represented as wood waste and investigated in this study. In order to optimize the condition of the enzymatic hydrolysis of alkaline pretreated DWC, response surface methodology is an efficient experimental tool used to determine the optimal conditions of numerous variables. In the present study, cellulase dosage, β-glucosidase dosage, Tween 80, and hydrolysis time, were found to have a significant effect on enzymatic hydrolysis based on the Plackett-Burman design. These factors were subsequently investigated on the optimal levels by a central composite design, which was determined at 36 FPU/g pretreated DWC of cellulase, 53 CBU/g pretreated DWC of β-glucosidase, and 0.4 g/g pretreated DWC of Tween 80 for 105 h. Under optimal conditions, glucose and reducing sugar yields were 121.7 and 435.8 mg/g pretreated DWC, respectively. Furthermore, enzymatic hydrolysate was applied as a substrate for fermentative H 2 production and obtained a yield of 27 mL H 2 /g pretreated DWC by an anaerobic mixed culture.