Groundwater from alluvial aquifers is a critical source of water supply for rural agriculture, particularly in semi-arid and arid regions. Effective management of these aquifers requires an understanding of the factors that influence their water resources. In this study, we present a case study of the Tata watershed in southeastern Morocco, where the economy is heavily dependent on agriculture and relies exclusively on groundwater. We demonstrate the importance of integrating geological, hydrogeological, and geophysical methods to characterize the aquifer and evaluate groundwater productivity. Analysis of 64 data wells tapping into the aquifer revealed significant disparities in flow yields, ranging from 0.05 to 15.50 L per second. The highest yields were found between depths of 12 and 43 m, which correspond to the alluvium and the altered and fractured part of its substrate. The maximum alluvial thickness of 57 m was determined using geo-electrical prospecting. A piezometric map was created to define the recharge zones, which correspond to the lateral contributions of the bordering Georgian limestones, and infiltration of both rain and surface water along the Tata wadi. Since 1987, there has been a continuous drop in groundwater level, which can be attributed to the increase in irrigated areas following financial incentives provided by the Moroccan government to the agricultural sector. A proposal has been made for the construction of a recharge dam to enable the recharge of the alluvial aquifer. This development is expected to serve a dual purpose by mitigating the deleterious impacts of flooding and facilitating the gradual water infiltration of the alluvial aquifer. This case study provides insights into the hydrodynamics of the aquifer and establishes a simplified model of its functioning. These findings have important implications for the management of alluvial aquifers in similar regions.