Background: Electronic nicotine delivery systems (ENDS, e-cigarettes) are increasingly used for the self-administration of nicotine by various human populations, including previously nonsmoking adolescents. Studies in preclinical models are necessary to evaluate health impacts of ENDS including the development of nicotine addiction, effects of ENDS vehicles, flavorants and co-administered psychoactive substances such as ∆ 9 -tetrahydrocannabinol (THC). This study was conducted to validate a rat model useful for the study of nicotine effects delivered by inhalation of vapor created by ENDS.Methods: Male Sprague-Dawley rats (N=8) were prepared with radiotelemetry devices for the reporting of temperature and activity. Experiments subjected rats to inhalation of vapor generated by an electronic nicotine delivery system (ENDS) adapted for rodents. Inhalation conditions included vapor generated by the propylene glycol (PG) vehicle, Nicotine (1, 10, 30 mg/mL in the PG) and THC (12.5, 25 mg/mL).
Results: Nicotine inhalation increased spontaneous locomotion and decreased body temperature of rats.Pretreatment with the nicotinic cholinergic receptor antagonist mecamylamine (2 mg/kg, i.p.) prevented stimulant effects of nicotine vapor inhalation and attenuated the hypothermic response. Combined inhalation of nicotine and THC resulted in apparently independent effects which were either additive (hypothermia) or opposed (activity).
Conclusions:These studies provide evidence that ENDS delivery of nicotine via inhalation results in nicotine-typical effects on spontaneous locomotion and thermoregulation in male rats. Effects were blocked by a nicotinic antagonist, demonstrating mechanistic specificity. This system will therefore support additional studies of the contribution of atomizer/wick design, vehicle constituents and/or flavorants to the effects of nicotine administered by ENDS.