2021
DOI: 10.21203/rs.3.rs-512769/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Delta Ruled First Order Iterative Deep Neural Learning for Sybil and Wormhole Attacks Detection in Healthcare Wireless Sensor Network

Abstract: Detection and isolation of Sybil and wormhole attack nodes in healthcare WSN is a significant problem to be resolved. Few research works have been designed to identify Sybil and wormhole attack nodes in the network. However, the detection performance of Sybil and wormhole attack nodes was not effectual as the false alarm rate was higher. In order to overcome such limitations, Delta Ruled First Order Iterative Deep Learning based Intrusion Detection (DRFOIDL-ID) Technique is proposed. The DRFOIDL-ID Technique i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
0
0
0
Order By: Relevance