In this work, we derive working equations for the linear response pair coupled cluster doubles (LR-pCCD) ansatz and its extension to singles (S), LR-pCCD+S. These methods allow us to compute electronic excitation energies and transition dipole moments based on a pCCD reference function. We benchmark the LR-pCCD+S model against the linear response coupled-cluster singles and doubles method for modeling electronic spectra (excitation energies and transition dipole moments) of the BH, H 2 O, H 2 CO, and furan molecules. We also analyze the effect of orbital optimization within pCCD on the resulting LR-pCCD+S transition dipole moments and oscillator strengths and perform a statistical error analysis. We show that the LR-pCCD+S method can correctly reproduce the transition dipole moments features, thus representing a reliable and cost-effective alternative to standard, more expensive electronic structure methods for modeling electronic spectra of simple molecules. Specifically, the proposed models require only mean-field-like computational cost, while excited-state properties may approach the CCSD level of accuracy. Moreover, we demonstrate the capability of our model to simulate electronic transitions with non-negligible contributions of double excitations and the electronic spectra of polyenes of various chain lengths, for which standard electronic structure methods perform purely.