Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As the world population and its dependency on energy is growing exponentially day by day, the existing energy generating resources are not enough to fulfill their needs. In the conventional grid system, most of the generated energy is wasted because of improper demand side management (DSM). This leads to a difficulty in keeping the equilibrium between the user need and electric power production. To overcome these difficulties, smart grid (SG) is introduced, which is composed of the integration of two-way communication between the user and utility. To utilize the existing energy resources in a better way, SG is the best option since a large portion of the generated energy is consumed by the educational institutes. Such institutes also need un-interrupted power supply at the lowest cost. Therefore, in this paper, we have taken a university campus load. We have not only applied two bio-inspired heuristic algorithms for energy scheduling—namely, the Firefly Algorithm (FA) and the Lion Algorithm (LA)—but also proposed a hybrid version, FLA, for more optimal results. Our main objectives are a reduction in both, that is, the cost of energy and the waiting time of consumers or end users. For this purpose, in our proposed model, we have divided all appliances into two categories—shiftable appliances and non-shiftable appliances. Shiftable appliances are feasible to be used in any of the time slots and can be planned according to the day-ahead pricing signal (DAP), provided by the utility, while non-shiftable appliances can be used for a specified duration and cannot be planned with the respective DAP signal. So, we have scheduled shiftable appliances only. We have also used renewable energy sources (RES) for achieving maximum end user benefits. The simulation results show that our proposed hybrid algorithm, FLA, has reduced the cost excellently. We have also taken into consideration the consumers’ waiting times, due to scheduling of appliances.
As the world population and its dependency on energy is growing exponentially day by day, the existing energy generating resources are not enough to fulfill their needs. In the conventional grid system, most of the generated energy is wasted because of improper demand side management (DSM). This leads to a difficulty in keeping the equilibrium between the user need and electric power production. To overcome these difficulties, smart grid (SG) is introduced, which is composed of the integration of two-way communication between the user and utility. To utilize the existing energy resources in a better way, SG is the best option since a large portion of the generated energy is consumed by the educational institutes. Such institutes also need un-interrupted power supply at the lowest cost. Therefore, in this paper, we have taken a university campus load. We have not only applied two bio-inspired heuristic algorithms for energy scheduling—namely, the Firefly Algorithm (FA) and the Lion Algorithm (LA)—but also proposed a hybrid version, FLA, for more optimal results. Our main objectives are a reduction in both, that is, the cost of energy and the waiting time of consumers or end users. For this purpose, in our proposed model, we have divided all appliances into two categories—shiftable appliances and non-shiftable appliances. Shiftable appliances are feasible to be used in any of the time slots and can be planned according to the day-ahead pricing signal (DAP), provided by the utility, while non-shiftable appliances can be used for a specified duration and cannot be planned with the respective DAP signal. So, we have scheduled shiftable appliances only. We have also used renewable energy sources (RES) for achieving maximum end user benefits. The simulation results show that our proposed hybrid algorithm, FLA, has reduced the cost excellently. We have also taken into consideration the consumers’ waiting times, due to scheduling of appliances.
Demand-side management in the smart grid often consists of optimizing energy-related objective functions, with respect to variables, in the presence of constraints expressing electrical consumption habits. These functions are often related to the user’s electricity invoice (cost) or to the peak energy consumption (peak-to-average energy ratio), which can cause electrical network failure on a large scale. However, the growth in energy demand, especially in emerging countries, is causing a serious energy crisis. This is why several studies focus on these optimization approaches. To our knowledge, no article aims to collect and analyze the results of research on peak-to-average energy consumption ratio and cost optimization using a systematic reproducible method. Our goal is to fill this gap by presenting a systematic mapping study on the subject, spanning the last decade (2013–2022). The methodology used first consisted of searching digital libraries according to a specific search string (104 relevant studies out of 684). The next step relied on an analysis of the works (classified using 13 criteria) according to 5 research questions linked to algorithmic trends, energy source, building type, optimization objectives and pricing schemes. Some main results are the predominance of the genetic algorithms heuristics, an insufficient focus on renewable energy and storage systems, a bias in favor of residential buildings and a preference for real-time pricing schemes. The main conclusions are related to the promising hybridization between the genetic algorithms and swarm optimization approaches, as well as a greater integration of user preferences in the optimization. Moreover, there is a need for accurate renewable and storage models, as well as for broadening the optimization scope to other objectives such as CO2 emissions or communications load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.