Nutrients consumed during the adult stage are a key factor affecting the growth, development, and reproduction of insect offspring and thus could play an important role in insect population research. However, there is absence of conclusive evidence regarding the direct effects of parental (F0) nutritional status on offspring (F1) fitness in insects. Carposina sasakii Matsumura is a serious, widespread fruit-boring pest that negatively impacts orchards and the agricultural economy across East Asia. In this study, life history data of F1 directly descended from F0 C. sasakii fed with seven different nutrients (water as control, 5 g·L−1 honey solution, 10 g·L−1 honey solution, 5 g·L−1 sucrose solution, 10 g·L−1 sucrose solution, 15 g·L−1 sucrose solution, and 20 g·L−1 sucrose solution) were collected under laboratory conditions. The growth and development indices, age-stage specific survival rate, age-stage specific fecundity, age-stage specific life expectancy, age-stage specific reproductive value, and population parameters of these offspring were analyzed according to the age-stage, two-sex life table theory. The results showed that the nutritional status of F0 differentially affects the growth, development, and reproduction of F1. The F1 offspring of F0 adult C. sasakii fed with 10 g·L−1 sucrose had significantly higher life table parameters than those of other treatments (intrinsic rate of increase, r = 0.0615 ± 0.0076; finite rate of increase, λ = 1.0634 ± 0.0081; net reproductive rate, R0 = 12.61 ± 3.57); thus, 10 g·L−1 sucrose was more suitable for raising C. sasakii in the laboratory than other treatments. This study not only provides clear evidence for the implications of altering F0 nutritional conditions on the fitness of F1 in insects, but also lays the foundation for the implementation of feeding technologies within the context of a well-conceived laboratory rearing strategy for C. sasakii.