Coastal artificial structures on the former mudflats provide available habitats for the rocky intertidal species which can establish new populations in these emerging habitats over their former distribution range limits. As a former southern species, the oyster Crassostrea sikamea has become a pioneer and rapidly invaded the artificial shorelines in northern China. We used a seascape genomics approach to investigate the population structure and genetic sources of C. sikamea on the coastal artificial structures, which is crucial for understanding the genetic mechanisms driving species distribution range expansion and invasion pathway of intertidal species. Five C. sikamea populations, including two artificial substrate populations (WGZ and ZAP), one oyster reef population (LS), and two natural rocky shore populations (ZS and XM), were measured using single nucleotide polymorphism (SNPs) obtained from double digest restriction‐site associated DNA sequencing (ddRAD‐Seq). Redundancy analyses (RDA) were implemented for investigating the relationship between local temperature variables and the temperature adaptability of C. sikamea. Genetic diversity, direction and strength of gene flow, and population structure all revealed that the LS and ZS populations were the genetic sources for the oyster populations on the emerging northern coastal artificial structures. Results of RDA showed that there were different adaptive potentials for northern and southern populations to local temperature variables and the oyster reef population which frequently suffers from heat stress owned high heat adaptability. The ZS population as a genetic source nearby the Yangtze River estuary provided mass larvae for the northern populations, and the other genetic source, the heat‐tolerant LS population, in the oyster reef played an important role in the post‐settlement success by providing preadapted genotypes. These results highlight the importance of multiple sources with divergent adaptative capabilities for biological invasion, and also emphasize the importance of the oyster reef in coastal biodiversity and conservation.