Glycosaminoglycan-based hydrogels
hold great potential for applications
in tissue engineering and regenerative medicine. By mimicking the
natural extracellular matrix processes of growth factor binding and
release, such hydrogels can be used as a sustained delivery device
for growth factors. Since neural networks commonly follow well-defined,
high-aspect-ratio paths through the central and peripheral nervous
system, we sought to create a fiber-like, elongated growth factor
delivery system. Cryogels, with networks formed at subzero temperatures,
are well-suited for the creation of high-aspect-ratio biomaterials,
because they have a macroporous structure making them mechanically
robust (for ease of handling) yet soft and highly compressible (for
interfacing with brain tissue). Unlike hydrogels, cryogels can be
synthesized in advance of their use, stored with ease, and rehydrated
quickly to their original shape. Herein, we use solvent-assisted microcontact
molding to form sacrificial templates, in which we produced highly
porous cryogel microscale scaffolds with a well-defined elongated
shape via the photopolymerization of poly(ethylene glycol) diacrylate
and maleimide-functionalized heparin. Dissolution of the template
yielded cryogels that could load nerve growth factor (NGF) and release
it over a period of 2 weeks, causing neurite outgrowth in PC12 cell
cultures. This microscale template-assisted synthesis technique allows
tight control over the cryogel scaffold dimensions for high reproducibility
and ease of injection through fine gauge needles.