2017
DOI: 10.1201/9781315389325
|View full text |Cite
|
Sign up to set email alerts
|

Demystifying Big Data and Machine Learning for Healthcare

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
2
9

Year Published

2018
2018
2022
2022

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 38 publications
(25 citation statements)
references
References 0 publications
0
14
2
9
Order By: Relevance
“…Our results do not confirm the assumptions of Natarajan et al (2017) who expects that variety is the most significant factor of big data analytics. Natarajan et al (2017) have made these assertions in the context of medical information quality.…”
Section: Model Estimation and Evaluation Of The Overall Modelcontrasting
confidence: 99%
See 1 more Smart Citation
“…Our results do not confirm the assumptions of Natarajan et al (2017) who expects that variety is the most significant factor of big data analytics. Natarajan et al (2017) have made these assertions in the context of medical information quality.…”
Section: Model Estimation and Evaluation Of The Overall Modelcontrasting
confidence: 99%
“…Our results do not confirm the assumptions of Natarajan et al (2017) who expects that variety is the most significant factor of big data analytics. Natarajan et al (2017) have made these assertions in the context of medical information quality. It is conceivable, that for medical decisions a variety of information, which points to the same diagnosis, is more important than volume or accuracy of individual data points due to the issue of differential diagnoses.…”
Section: Model Estimation and Evaluation Of The Overall Modelcontrasting
confidence: 99%
“…This disrupts the progress of comprehensive diagnostics. Many healthcare institutions implement centralized repositories by pooling data from multiple systems into data warehouses or data lakes [9,10]. Sharing these data out of the organizations' boundaries is not a viable solution since the anonymization of data may not be possible for certain data types, such as genomic data, and also since linking data sets increases the re-identification risk [11,12].…”
Section: Infrastructure and Interoperabilitymentioning
confidence: 99%
“…Eine Minute eines hochauflösenden chirurgischen Videos enthält zwischen 200 und 400 MB an Information, also ungefähr die gleiche Datenmenge, die ein gesamtes CT-Scanbild des Abdomens mit höherer Auflösung bieten könnte. Es ist eine Goldgrube für Daten, die nicht ignoriert werden sollte [4][5][6]. Zusätzlich zu Videoaufnahmen können die Körperbewegungen der Chirurgen und des Teams, inklusive Handführung, Instrumentennutzung und Interaktion mittels Kameras und anderen Sensoren im Operationssaal registriert werden [7].…”
Section: Ki Und Chirurgische Performanceunclassified