IL-10–differentiated dendritic cells (DC10s) can prevent allergen sensitization and reverse the asthma phenotype in mice with established disease. However, little is known about the time-frames over which this tolerance is effective. We report that at 2 wk after i.p. or transtracheal delivery of 1 × 106 OVA-, but not house dust mite- presenting, DC10s to OVA-asthmatic mice, significant diminution of airway hyperresponsiveness (AHR) was first apparent, whereas AHR was abrogated between 3 and 10 wk posttreatment. At 13 wk, AHR returned to pretreatment levels but could again be reversed by DC10 retreatment. The impact of a single DC10 treatment on airway eosinophil and Th2 cytokine responses to recall OVA challenge, and on OVA-specific IgE/IgG1 responses, was substantial at 3 wk posttreatment, but progressively increased thereafter, such that at 8 mo, airway eosinophil and Th2 responses to recall allergen challenge remained ∼85–95% suppressed relative to saline-treated asthmatic mice. Four biweekly DC10 treatments, whether transtracheal or i.p., reduced all asthma parameters to near background by 8 wk, whereas s.c. DC10 treatments did not affect AHR but did reduce the airway Th2 responses (i.v. DC10 had no discernible effects). Repeated challenge of the DC10-treated mice with aerosolized OVA (100 μg/ml) did not reverse tolerance, but treatment with the indoleamine-2,3-dioxygenase antagonist 1-methyltryptophan or neutralizing anti–IL-10R from days 12 to 21 after DC10 therapy partially reversed tolerance (Th2 cytokine responses, but not AHR). These findings indicate that DC10-induced Th2 tolerance in asthmatic animals is long lived, but that DC10s employ distinct mechanisms to affect AHR versus Th2 immunoinflammatory parameters.