The T cell-inflamed tumor microenvironment, characterized by CD8 T cells and type I/II interferon transcripts, is an important cancer immunotherapy biomarker. Tumor mutational profile may also dictate response with some oncogenes (i.e. WNT/β-catenin) known to mediate immuno-suppression. Building on these observations we performed a multi-omic analysis of human cancer correlating the T cell-inflamed gene expression signature with the somatic mutanome and transcriptome for different immune phenotypes, by tumor type and across cancers. Strong correlations were noted between mutations in oncogenes and non-T cellinflamed tumors with examples including IDH1 and GNAQ as well as less well-known genes including KDM6A, CD11c and genes with unknown functions. Conversely, we observe many genes associating with the T cell-inflamed phenotype including VHL and PBRM1, among others.Analyzing gene expression patterns, we identify oncogenic mediators of immune exclusion broadly active across cancer types including HIF1A and MYC. Novel examples from specific tumors include sonic hedgehog signaling in ovarian cancer or hormone signaling and novel transcription factors across multiple tumors. Using network analysis, somatic and transcriptomic events were integrated, demonstrating that most non-T cell-inflamed tumors are influenced by multiple pathways. Validating these analyses, we observe significant inverse relationships between protein levels and the T cell-inflamed gene signature with examples including NRF2 in lung, ERBB2 in urothelial and choriogonadotropin in cervical cancer. Finally, we integrate available databases for drugs that might overcome or augment the identified mechanisms.These results nominate molecular targets and drugs potentially available for immediate translation into clinical trials for patients with cancer.