Current dendritic cell (DC)-based vaccines are based on ex vivo-generated autologous DCs loaded with antigen prior to readministration into patients. A more direct and less laborious strategy is to target antigens to DCs in vivo via specific surface receptors. Therefore, we developed a humanized antibody, hD1V1G2/G4 (hD1), directed against the C-type lectin DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) to explore its capacity to serve as a target receptor for vaccination purposes. hD1 was cross-linked to a model antigen, keyhole limpet hemocyanin (KLH). We observed that the chimeric antibody-protein complex (hD1-KLH) bound specifically to DC-SIGN and was rapidly internalized and translocated to the lysosomal compartment. To determine the targeting efficiency of hD1-KLH, monocyte-derived DCs and peripheral blood lymphocytes (PBLs) were obtained from patients who had previously been vaccinated with KLHpulsed DCs. Autologous DCs pulsed with hD1-KLH induced proliferation of patient PBLs at a 100-fold lower concentration than KLH-pulsed DCs. In addition, hD1-
KLH-targeted
IntroductionDendritic cells (DCs) are professional antigen-presenting cells (APCs) that play a key role in regulating antigen-specific immunity. DCs capture antigens, process them into peptides, and present these to T cells. 1 The interaction between DC and T-cell controls the type and magnitude of the resulting immune response. Recently, preclinical and clinical studies have exploited DCs in an attempt to improve vaccine efficacy. 2 Most of these studies involve ex vivo antigen loading of autologous monocyte-derived DCs that are readministrated to the patient, a laborious and costly procedure. A more direct strategy involves targeting of antigens specifically to antigen uptake receptors on the DC in vivo. Potential candidate receptors highly expressed by DCs include Fc receptors [3][4][5] and members of the C-type lectin family. 6,7 Whereas Fc receptors are expressed by many different cell types, the expression of some members of the C-type lectin family are more DC restricted. 8 C-type lectins bind sugar residues in a calcium-dependent manner via a highly conserved carbohydrate recognition domain. C-type lectin receptors expressed by DCs are implicated in immunoregulatory processes, such as antigen capture, DC trafficking, and DC-T-cell interactions. 8 Based on the location of the amino (N) terminus, 2 types of membrane-bound C-type lectins can be distinguished on DCs. Type I C-type lectins have their N terminus located outside, while type II C-type lectins have their N terminus located inside the cell. Several studies have been conducted on antigen targeting to C-type lectin receptors for vaccination purposes, mainly focusing on the type I C-type lectins mannose receptor (MR) 9 and DEC-205. 6,10,11 Vaccines based on natural MR ligands have been shown to effectively induce humoral and cellular responses. 9 However, these ligands lack specificity for the MR, and may target multiple lectins with overlapping binding sp...