Single-crystalline cored CMSX-4 blades obtained at a withdrawal rate of 3 mm/min by the vertical Bridgman method were analyzed. The dendritic structure and crystal orientation near the cooling bores of the blades were studied through Scanning Electron Microscopy, the X-ray diffraction measurements of α and β angular components of the primary crystal orientation, and the γ angular component of the secondary crystal orientation. Additionally, the primary arm spacing (PAS) was studied in areas near and far from the cooling bores. It was found that in the area approximately 3–4 mm wide around the cooling bores, changes occurred in the α, β, and γ angles, as well as in the PAS. The PAS determined for the transverse section of the root and the linear primary arm spacing (LPAS) determined for the longitudinal sections, as well as their relationship, have been defined for the areas located near the cooling bores and those at a distance from them. The vertical temperature gradient of 29.5 K/cm was estimated in the root areas located near the cooling bores based on the PAS values. The value of this gradient was significantly higher compared to the growth chamber operating gradient of 16 K/cm. The two-scale analysis applied in this study allowed for the determination of the relationship between the process of dendrite array creation proceeding on a millimeter scale, which is associated with the local changes in crystal orientation near the cooling bores, and that which proceeds on a scale of tens of millimeters, associated with the changes in crystal orientation in the whole blade cast.