2023
DOI: 10.1007/s10710-023-09462-2
|View full text |Cite
|
Sign up to set email alerts
|

Denoising autoencoder genetic programming: strategies to control exploration and exploitation in search

David Wittenberg,
Franz Rothlauf,
Christian Gagné

Abstract: Denoising autoencoder genetic programming (DAE-GP) is a novel neural network-based estimation of distribution genetic programming approach that uses denoising autoencoder long short-term memory networks as a probabilistic model to replace the standard mutation and recombination operators of genetic programming. At each generation, the idea is to capture promising properties of the parent population in a probabilistic model and to use corruption to transfer variations of these properties to the offspring. This … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?