Denoising Score Matching with Random Fourier Features
Tsimboy Olga,
Yermek Kapushev,
Evgeny Burnaev
et al.
Abstract:The density estimation is one of the core problems in statistics. Despite this, existing techniques like maximum likelihood estimation are computationally inefficient due to the intractability of the normalizing constant. For this reason an interest to score matching has increased being independent on the normalizing constant. However, such estimator is consistent only for distributions with the full space support. One of the approaches to make it consistent is to add noise to the input data which is called De… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.