2022
DOI: 10.24003/emitter.v10i1.704
|View full text |Cite
|
Sign up to set email alerts
|

Density-based Clustering for 3D Stacked Pipe Object Recognition using Directly-given Point Cloud Data on Convolutional Neural Network

Abstract: One of the most commonly faced tasks in industrial robots is bin picking.  Much work has been done in this related topic is about grasping and picking an object from the piled bin but ignoring the recognition step in their pipeline. In this paper, a recognition pipeline for industrial bin picking is proposed. Begin with obtaining point cloud data from different manner of stacking objects there are well separated, well piled, and arbitrary piled. Then followed by segmentation using Density-based Spatial Cluster… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 21 publications
0
2
0
1
Order By: Relevance
“…[15] menyajikan pengenalan wajah baru dengan menggunakan titik sudut arah 3D (3D DCP). Masih pada dekade yang sama setelah arsitektur PointNet [16] dari Convolutional Neural Network (CNN) dikenalkan semakin banyak peneliti yang mencoba menerapkan arsitektur ini untuk berbagai pengolahan data 3D, seperti pengenalan objek 3D [17] dan pengenalan wajah 3D [5], [18]. PointNet muncul sebagai pendekatan yang lebih fleksibel dan kuat dalam pengenalan wajah 3D.…”
Section: A Pendahuluanunclassified
“…[15] menyajikan pengenalan wajah baru dengan menggunakan titik sudut arah 3D (3D DCP). Masih pada dekade yang sama setelah arsitektur PointNet [16] dari Convolutional Neural Network (CNN) dikenalkan semakin banyak peneliti yang mencoba menerapkan arsitektur ini untuk berbagai pengolahan data 3D, seperti pengenalan objek 3D [17] dan pengenalan wajah 3D [5], [18]. PointNet muncul sebagai pendekatan yang lebih fleksibel dan kuat dalam pengenalan wajah 3D.…”
Section: A Pendahuluanunclassified
“…In recent years, the research of computer vision and autonomous driving has received more and more attention. Three-dimensional rigid PCR is a basic and critical problem in the field of 3D vision, such as 3D modeling [1,2], localization for robot navigation [3][4][5], object recognition [6][7][8], and surface alignment [9,10]. The purpose of PCR is to seek the best transformation parameters that precisely aligns a pair of point in different coordinate systems.…”
Section: Introductionmentioning
confidence: 99%
“…RoISC (Robotics and Intelligent System Center) technology has been penetrated into a wider area in various research fields, ranging from humanoid robots, to computer vision [1]. In computer vision research fields, various studies such as robust human body orientation estimation [2], densitybased clustering for stacked pipe object [3], and so on have been carried out recently. Not content with that, RoISC is currently preparing to delve deeper into computer vision research and plans to achieve novelty by combining stereo vision features with omnidirectional cameras features.…”
Section: Introductionmentioning
confidence: 99%