Reaction kinetics studies were conducted for the conversions of ethanol and acetic acid over silica-supported Pt and Pt/Sn catalysts at temperatures from 500 to 600 K. Addition of Sn to Pt catalysts inhibits the decomposition of ethanol to CO, CH 4 , and C 2 H 6 , such that PtSn-based catalysts are active for dehydrogenation of ethanol to acetaldehyde. Furthermore, PtSn-based catalysts are selective for the conversion of acetic acid to ethanol, acetaldehyde, and ethyl acetate, whereas Pt catalysts lead mainly to decomposition products such as CH 4 and CO. These results are interpreted using density functional theory (DFT) calculations for various adsorbed species and transition states on Pt(111) and Pt 3 Sn(111) surfaces. The Pt 3 Sn alloy slab was selected for DFT studies because results from in situ 119 Sn Mössbauer spectroscopy and CO adsorption microcalorimetry of silica-supported Pt/Sn catalysts indicate that Pt-Sn alloy is the major phase present. Accordingly, results from DFT calculations show that transition-state energies for C-O and C-C bond cleavage in ethanolderived species increase by 25-60 kJ/mol on Pt 3 Sn(111) compared to Pt(111), whereas energies of transition states for dehydrogenation reactions increase by only 5-10 kJ/mol. Results from DFT calculations show that transition-state energies for CH 3 CO-OH bond cleavage increase by only 12 kJ/mol on Pt 3 Sn(111) compared to Pt(111). The suppression of C-C bond cleavage in ethanol and acetic acid upon addition of Sn to Pt is also confirmed by microcalorimetric and infrared spectroscopic measurements at 300 K of the interactions of ethanol and acetic acid with Pt and PtSn on a silica support that had been silylated to remove silanol groups.