Density functional theory study of energetics, local chemical environment and magnetic properties in a high-entropic MnNiSi0.2Ge0.2Sn0.2Al0.2Ga0.2 intermetallic magnet
Abstract:Rare-earth-free magnetostructural MnNiSi-based solid solutions are considered as promising candidates for solid-state cooling applications. In this paper, we use density functional theory calculations to study the energetics, variations in atomic displacements and bond length, and magnetic properties of high-entropic, intermetallic MnNi-X (X=Si0.2Ge0.2Sn0.2Al0.2Ga0.2) magnet in both the low-symmetry Pnma and high-symmetry P63/mmc structures, where we confine the large configurational entropy to the non-magneti… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.