2024
DOI: 10.1002/jgt.23117
|View full text |Cite
|
Sign up to set email alerts
|

Density of 3‐critical signed graphs

Laurent Beaudou,
Penny Haxell,
Kathryn Nurse
et al.

Abstract: We say that a signed graph is ‐critical if it is not ‐colorable but every one of its proper subgraphs is ‐colorable. Using the definition of colorability due to Naserasr, Wang, and Zhu that extends the notion of circular colorability, we prove that every 3‐critical signed graph on vertices has at least edges, and that this bound is asymptotically tight. It follows that every signed planar or projective‐planar graph of girth at least 6 is (circular) 3‐colorable, and for the projective‐planar case, this girth … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?