RBsumB. -On montre que la technique de developpement en moments de la densitt d'ttats est un outil tres utile pour l'etude des systemes desordonnes. Les moments peuvent &re calculCs directement comme une fonction des integrales de recouvrement et de l'ordre local caractkrisant le systeme. Parmi les techniques possibles pour obtenir la densite d'ttats a partir de la seule connaissance de ses premiers moments, la meilleure repose sur un developpement en fraction continue de sa transforrnee de Hilbert. Cette methode est brikvement discutee, et I'on montre comment des informations prbcises peuvent 6tre obtenues sur d'6ventuelles bandes d'energie interdite ou d'eventuels points critiques dans la densite d'etats.On donne ensuite des exemples des applications possibles de la methode des moments k different~ cas de systemes dbordonnb. Dans le cas des systemes a dksordre de composition, c'est-Adire par exemple des alliages dtsordonn6s, cette methode permet une nouvelle simple dkviation de I'approximation de potentiel cohkrent, et peut &tre utiliske pour obtenir des resultats etendant cette approximation.Dans le cas des systemes avec desordre topologique, c'est-a-dire par exemple les metaux liquides ou les bandes d'impuretes, on donne des densites d'etats detaillees, en utilisant en particulier une approche de simulation de ces systkmes sur ordinateur.Abstract. -Expansion of the density of states in its moments is shown to provide a useful tool in the study of the electronic properties of tightly bound disordered systems. The moments can be directly computed as a function of the overlap integrals and the local order of the system. Among the possible techniques for obtaining the density of states from its low order moments, the best one, using a continued fraction expansion of its Hilbert transform, is briefly discussed. It is also shown how information about the possible band gaps and the remnants of critical points structure can be obtained through this technique. Examples of the possible applications of the moment method to various cases of disordered systems are then given. For systems with compositional disorder, i.e. disordered alloys, this approximation which provides a new simple derivation of the coherent potential approximation (CPA), can be used to obtain results extending the CPA. For systems with topological disorder, i.e. impurity bands of liquid metals, detailed density of states are given, using in particular a simulation of the random system on the computer.
Introduction.-This paper concerns a method recently developed to study the electronic properties of tightly bound disordered systems. Much research has been performed in this domain, where great difficulties arise due to the breakdown of the usual approach based on the periodicity of the lattice. Most of the results obtained are derived for one-dimensional disordered systems [I], but unfortunately neither the methods nor the results can in general be extended to the three-dimensional case.The method presented here, based on an expansion of the electron...