2022
DOI: 10.1109/access.2022.3227936
|View full text |Cite
|
Sign up to set email alerts
|

Density Peaks Clustering Based on Potential Model and Diffusion Strength

Abstract: Density peaks clustering (DPC) is a simple and efficient density-based clustering algorithm without complex iterative procedures. However, DPC needs to manually choose clustering centers via a decision graph, which often can't identify real centers and breaks the continuous flow of the algorithm. In addition, DPC is highly sensitive to the cut-off distance and suffers from the domino chain reaction. To surmount the aforementioned deficiencies, an improved density peaks clustering based on potential model and d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 40 publications
0
0
0
Order By: Relevance