2022
DOI: 10.48550/arxiv.2206.05643
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks

Abstract: Deep neural network (DNN) models have achieved state-of-the-art predictive accuracy in a wide range of supervised learning applications. However, accurately quantifying the uncertainty in DNN predictions remains a challenging task. For continuous outcome variables, an even more difficult problem is to estimate the predictive density function, which not only provides a natural quantification of the predictive uncertainty, but also fully captures the random variation in the outcome. In this work, we propose the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?