Currently, the gold standard for aesthetic and functional reconstruction of critical mandibular defects is an autologous fibular flap; however, this carries risk of donor site morbidity, and is not a promising option in patients with depleted donor sites due to previous surgeries. Tissue engineering presents a potential solution in the design of a biomimetic scaffold that must be osteoconductive, osteoinductive, and support osseointegration. These osteogenesis-inducing scaffolds are most successful when they mimic and interact with the surrounding native macroand micro-environment of the mandible. This is accomplished via the regeneration triad: (1) a biomimetic, bioactive osteointegrative scaffold, most likely a resorbable composite of collagen or a synthetic polymer with collagen-like properties combined with beta-tri calcium phosphate that is 3D printed according to defect morphology; (2) growth factor, most frequently bone morphogenic protein 2 (BMP-2); and (3) stem cells, most commonly bone marrow mesenchymal stem cells. Novel techniques for scaffold modification include the use of nano-hydroxyapatite, or combining a vector with a biomaterial to create a gene activated matrix that produces proteins of interest (typically BMP-2) to support osteogenesis. Here, we review the current literature in tissue engineering in order to discuss the success of varying use and combinations of scaffolding materials (i.e., ceramics, biological polymers, and synthetic polymers) with stem cells and growth factors, and will examine their success in vitro and in vivo to induce and guide osteogenesis in mandibular defects.