This paper presents IRONEDGE, an architectural framework that can be used in different edge Stream Processing solutions for “Smart Infrastructure” scenarios, on a case-by-case basis. The architectural framework identifies the common components that any such solution should implement and a generic processing pipeline. In particular, the framework is considered in the context of a study case regarding Internet of Things (IoT) devices to be attached to rolling stock in a railway. A lack of computation and storage resources available in edge devices and infrequent network connectivity are not often seen in the existing literature, but were considered in this paper. Two distinct implementations of IRONEDGE were considered and tested. One, identified as Apache Kafka with Kafka Connect (K0-WC), uses Kafka Connect to pass messages from MQ Telemetry Transport (MQTT) to Apache Kafka. The second scenario, identified as Apache Kafka with No Kafka Connect (K1-NC), allows Apache Storm to consume messages directly. When the data rate increased, K0-WC showed low throughput resulting from high losses, whereas K1-NC displayed an increase in throughput, but did not match the input rate for the Data Reports. The results showed that the framework can be used for defining new solutions for edge Stream Processing scenarios and identified a reference implementation for the considered study case. In future work, the authors propose to extend the evaluation of the architectural variation of K1-NC.