The friction and wear behaviors of plasma sprayed aluminum–bronze (CuAl) coating sliding against silicon nitride (Si3N4) in artificial seawater were investigated and compared with those in pure water and dry sliding. The morphologies of the worn surfaces were analyzed by three‐dimensional non‐contact surface mapping and scanning electron microscopy. Moreover, chemical states of the tribochemical products of CuAl/Si3N4 in seawater were characterized by X‐ray photoelectron spectroscopy. Results show that the plasma sprayed CuAl coating possessed a specific wear rate (in order of 10−7 mm3/Nm) in seawater more than 600 times smaller than that in dry sliding due to the great alleviation in abrasion wear and splats delamination. Besides, the CuAl/Si3N4 had a friction coefficient of 0.06 in seawater, significantly lower and more stable than those in pure water and dry sliding. The tribochemical products of CuAl/Si3N4 in seawater, which were proved to be silica, alumina, and their hydrates, transformed into a loosened wear‐debris layer under the coagulation effect of the seawater and dominated the excellent lubrication state in artificial seawater. Copyright © 2014 John Wiley & Sons, Ltd.