These notes are based on lectures given by one of us (J.B.T.) at the University of Texas in Austin in 1991. Part I concerns some basic features of plasma confinement by magnetic fields as an introduction to an account of plasma relaxation in Part II. Part III discusses confinement by magnetic mirrors, especially minimum-B systems. It also includes a general discussion of adiabatic invariants and of the principle of maximal ordering in perturbation theory. Part IV is devoted to the analysis of perturbations in toroidal plasmas and the stability of ballooning modes.
PREFACEThe theory of plasma confinement is complicated and incomplete. Because current textbooks do not include material at the frontier of research, it is hard for students and researchers to become familiar with the state of the art. Bryan Taylor's notes are presented here to start filling that gap. Although based on lectures from over twenty years ago, they provide much needed clarity in selected areas of current plasma confinement research. Of course much of the original work on which these notes are based is by Bryan Taylor and collaborators; but here, he and Sarah Newton draw the many threads together. Indeed, while some may find the results familiar, the insight is fresh and enlightening. The research frontier is just beyond these notes. Some of the outstanding questions are posed and some are left to the reader to discern. For example, we still need to know: how fast plasmas relax; how three-dimensional reconnection works; how ballooning modes saturate and; how minimum B ideas can improve toroidal devices. The insights here will help anyone wanting to answer those and other questions.