Protection against the electromagnetic fields around high-voltage transmission lines is an issue of great importance, especially in the case of buildings near power lines. Indeed, the developed fields can be harmful for the habitants and electrical/electronic devices, so the implementation of appropriate measures to address the above electromagnetic interference issue is necessary in order to ensure the safety of both human beings and equipment. Several practices have been proposed to reduce the electric and the magnetic fields around overhead and underground transmission lines (minimum distance, shielded cables, anechoic chamber etc.). In this context, the scope of the current paper is the use of highly permeable magnetic sheets for shielding purposes, along with the development of an appropriate procedure, based on finite element analysis (FEA) for the efficient design of passive shielding. The simulation results are compared with laboratory measurements in order to confirm the adequacy of the proposed methodology. The good agreement between the FEA outcomes and the experimental results confirms that the developed FEA tool can be trustfully used for the design of the shielding means in the case of overhead or underground power lines.