A simple technique is introduced to estimate the inter-modal coupling relations of two Statistical Energy Analysis (SEA) subsystems connected via an arbitrary interface. Based on a subsystem modal approach, the dynamic stiffness matrix of a generic built-up system is derived analytically. The coupling stiffness terms between any pair of subsystem modes can then be determined in explicit expressions. Under the proper SEA conditions, e.g. each subsystem has a high modal density and the couplings between SEA subsystems are sufficiently weak, these inter-modal coupling stiffness expressions can be greatly simplified. The results can then be easily accommodated within the standard SEA modeling procedure to predict the SEA response of generic built-up systems in a simple manner. Theoretical applications are made to estimate the SEA coupling loss factors between two subsystems connected by two rigid points.