2007
DOI: 10.1021/jp0668403
|View full text |Cite
|
Sign up to set email alerts
|

Dependence of the Work Function of TiO2 (Rutile) on Crystal Faces, Studied by a Scanning Auger Microprobe

Abstract: The work functions for atomic-level regulated (HF-treated and annealed) n-TiO 2 (110) and (100) surfaces with a clear step and terrace structure, together with photoetched ones, were investigated with a scanning auger microprobe (SAM) using 0.05 wt % Nb-doped TiO 2 . Analysis of the threshold region of the secondary electron spectra has revealed that the work function of the atomic-level regulated TiO 2 (100) surface (about 4.13 eV) is 0.07 eV lower than that of the (110) surface. The photoetching of the atomi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

11
104
1
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 130 publications
(117 citation statements)
references
References 32 publications
11
104
1
1
Order By: Relevance
“…The barrier height could theoretically be calculated from the electron affi nity of rutile TiO 2 (100) and the work function of Au(111). Since the reported values for the former [ 26,27 ] and the latter [ 28 ] are 4.08 and 5.31 eV, respectively, the theoretical barrier height is calculated to be 1.23 eV. The difference between the calculated and experimentally obtained values could be explained in terms of the difference between the surface in vacuum and the epitaxial interface with a certain mismatch.…”
Section: Doi: 101002/admi201400066mentioning
confidence: 90%
“…The barrier height could theoretically be calculated from the electron affi nity of rutile TiO 2 (100) and the work function of Au(111). Since the reported values for the former [ 26,27 ] and the latter [ 28 ] are 4.08 and 5.31 eV, respectively, the theoretical barrier height is calculated to be 1.23 eV. The difference between the calculated and experimentally obtained values could be explained in terms of the difference between the surface in vacuum and the epitaxial interface with a certain mismatch.…”
Section: Doi: 101002/admi201400066mentioning
confidence: 90%
“…An alternative UC of the composite was also considered, where the zigzag line of graphene runs parallel to the A cell vector of rutile (110). Here the smallest identi ed commensurate unit cell ( commensurate de ned here as having mismatch under 5%) comprised of an 8 × 5…”
Section: Unit Cell Constructionmentioning
confidence: 99%
“…Zakres natężeń wysokich pól elektrycznych (emisji polowej) jest od dołu ograniczony natężeniem krytycznego pola elektrycznego Eth (threshold field), powyżej którego zaczyna się przewaga emisji polowej i możliwe jest wykreślenie prostej F-N. Parametry prostej: nachylenie i rzędna stanowią podstawę do wyliczenia wartości współ-czynników wzmocnienia pola elektrycznego β i powierzchni emisyjnej α. Parametry emisyjne wszystkich emiterów zestawiono w tabeli II. Dla wszystkich obliczeń przyjęto pracę wyjścia rutylu (TiO2) równą φ = 4,2 eV [12]. Niestabilna emisja Ślady na anodzie Duże prądy *Eth-krytyczne natężenie pola elektrycznego, β -współczynnik wzmocnienia pola elektrycznego, α -powierzchnia emisyjna.…”
Section: Charakterystyki Emisyjne I = F(e)unclassified