Near-term quantum communication protocols suffer inevitably from channel noises, whose alleviation has been mostly attempted with resources such as multiparty entanglement or sophisticated experimental techniques. Generation of multiparty higher dimensional entanglement is not easy. This calls for exploring realistic solutions which are implementable with current devices. Motivated particularly by the difficulty in generation of multiparty entangled states, in this paper, we have investigated error-free information transfer with minimal requirements. For this, we have proposed a new information encoding scheme for communication purposes. The encoding scheme is based on the fact that most noisy channels leave some quantities invariant. Armed with this fact, we encode information in these invariants. These invariants are functions of expectation values of operators. This information passes through the noisy channel unchanged. Pertinently, this approach is not in conflict with other existing error correction schemes. In fact, we have shown how standard quantum error-correcting codes emerge if suitable restrictions are imposed on the choices of logical basis states. As applications, for illustration, we propose a quantum key distribution protocol and an error-immune information transfer protocol.