Estrogens are essential for female reproduction and overall well-being, and estrogens in the circulation are largely synthesized in ovarian granulosa cells. Using primary cultures of ovarian granulosa cells from gonadotropin-primed immature rats, we have recently discovered that pituitary FSH and ovarian cytokine transforming growth factor beta 1 (TGFb1) induce calcineurin-mediated dephosphorylation-activation of cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC2) to modulate the expression of Star, Cyp11a1, and Hsd3b leading to increased production of progesterone. This study explored the role of calcineurin and CRTC2 in FSH and TGFb1 regulation of Cyp19a1 expression in granulosa cells. Ovarian granulosa cells treated with FSH displayed increased aromatase protein at 24 h post-treatment, which subsided by 48 h, while TGFb1 acting through its type 1 receptor augmented the action of FSH with a greater and longer effects. It is known that the ovary-specific Cyp19a1 PII-promoter contains crucial response elements for CREB and nuclear receptor NR5A subfamily liver receptor homolog 1 (LRH1/NR5A2) and steroidogenic factor 1 (SF1/NR5A1), and that the Nr5a2 promoter also has a potential CREB-binding site. Herein, we demonstrate that FSHCTGFb1 increased LRH1 and SF1 protein levels, and their binding to the Cyp19a1 PII-promoter evidenced, determined by chromatin immunoprecipitation analysis. Moreover, pretreatment with calcineurin auto-inhibitory peptide (CNI) abolished the FSHCTGFb1-upregulated but not FSH-upregulated aromatase activity at 48 h, and the corresponding mRNA changes in Cyp19a1, and Nr5a2 and Nr5a1 at 24 h. In addition, FSH and TGFb1 increased CRTC2 binding to the Cyp19a1 PII-promoter and Nr5a2 promoter at 24 h, with CREB bound constitutively. In summary, the results of this study indicate that calcineurin and CRTC2 have important roles in mediating FSH and TGFb1 collateral Key Words
Journal of Molecular EndocrinologyResearch W-A LAI and others Calcineurin and CRTC2 in ovary Cyp19a1 Nr5a expression 53:2 259-270