The accumulation of glycochenodeoxycholate (GCDC) induced hepatocyte apoptosis in cholestasis. However, many hepatocytes still survived GCDC-induced apoptosis. The molecular mechanism for the survival of hepatocytes remains unclear. In the present study, isolated rat hepatocytes were cultured in William's E medium and treated with 50 M GCDC. DNA, RNA, cell lysate, and nuclear proteins were collected at different intervals for DNA fragmentation assay, reverse transcription PCR, Western blotting, and gel mobility shift assay, respectively. GCDC-induced active caspases were detected as early as 2 h by Western blotting and kinetic caspase assay, whereas hepatocyte apoptosis was found at 4 h by DNA fragmentation and terminal deoxynucleotidyl transferase-mediated dUPT nick-end labeling assay. When GCDC was removed, the increased caspases as well as NF-B could be restored to control level. A1/Bfl-1 and inducible nitric oxide synthase (iNOS) were up-regulated in 2 h of GCDC stimulation. After GCDC was removed, hepatocytes decreased expression of A1/Bfl-1, but not iNOS, to the control level. NF-B activation coincided with the change of A1/Bfl-1. Survivin, cIAP1, cIAP2, XIAP, and A1/Bfl-1, but not iNOS, were downregulated by pan-caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone. In addition, benzyloxycarbonyl-VAD-fluoromethyl ketone inhibited release of cytochrome c and suppressed NF-B activation. Our data suggested that caspase pathway is an important regulatory factor during hepatocyte apoptosis. GCDCinduced caspase response is reversible, which may activate anti-apoptotic genes to protect hepatocytes from apoptosis.