The Pennsylvanian-Middle Triassic Cooper Basin is Australia's premier conventional onshore hydrocarbon-producing province. The basin also hosts a range of unconventional gas play types, including basin-centered gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee Formations, and the Murteree and Roseneath shale gas plays.This study used petroleum systems analysis to investigate the maturity and generation potential of 10 Permian source rocks in the Cooper Basin. A deterministic petroleum systems model was used to quantify the volume of expelled and retained hydrocarbons, estimated at 1272 billion BOE (512 billion bbl and 760 billion BOE) and 977 billion BOE (362 billion bbl and 615 billion BOE), respectively. Monte Carlo simulations were used to quantify the uncertainty in volumes generated and to demonstrate the sensitivity of these results to variations in source-rock characteristics.The large total generation potential of the Cooper Basin and the broad distribution of the Permian source kitchen highlight the basin's significance as a world-class hydrocarbon province. The large disparity between the calculated volume of hydrocarbons generated and the volume so far found in reservoirs indicates the potential for large volumes to remain within the basin, despite significant losses from leakage and water washing. The hydrocarbons expelled have provided abundant charge to both conventional accumulations and to the tight and basin-centered gas plays, and the broad spatial distribution of hydrocarbons remaining within the source rocks, especially those within the Toolachee and Patchawarra Formations, suggests the potential for widespread shale and deep dry coal plays.