Chronic wounds caused by related diseases such as ischemia, diabetes, and venous stasis are often hard to manage, mainly because of their susceptibility to infection and the lack of healing-promoting growth factors. Functional hydrogel is a promising material for wound treatment due to its regulable swelling rate and its ability to absorb wound exudate, which can keep the wound isolated from the outside world to prevent infection. In this study, a photocrosslinked physicochemical double-network hydrogel with injectable, antibacterial, and excellent mechanical properties was prepared. The dZnONPs enhanced hybrid injectable photocrosslinked double-network hydrogel (Ebs@dZnONPs/HGT) was synthetized starting from acylated hyaluronic acid and tannic acid via free radical reaction and hydrogen bonding, following doped with ebselen (Ebs) loaded dendritic zinc oxide nanoparticles (dZnONPs) to prepare the Ebs@dZnONPs/HGT hydrogel. The physicochemical characterization confirmed that the Ebs@dZnONPs/HGT hydrogel had excellent mechanical properties, hydrophilicity, and injectable properties, and could fit irregular wounds well. In vitro experiments revealed that the Ebs@dZnONPs/HGT hydrogel presented credible cytocompatibility and prominent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vivo experiments further demonstrated that the Ebs@dZnONPs/HGT hydrogel had excellent biosafety and could improve re-epithelialization in the wound area, thus significantly accelerating wound healing.