Optical Absorption (OA), Electron Paramagnetic Resonance (EPR) and Thermally Stimulated Depolarisation Currents (TSDC) techniques were applied to study the effects of irradiation and thermal treatments in the formation, aggregation and destruction processes of dipole defects in MgAl 2 O 4 spinel. Irradiated MgAl 2 O 4 crystals present two OA bands centred at 3.4 eV and 5.1 eV. The 3.4 eV band increases with the irradiation-dose, stabilizes its maximum height for doses near 10 kGy and is completely destroyed for thermal treatments above 500 K. This same band decays when the sample is maintained at room temperature reaching a constant value after a few weeks. The EPR spectrum is composed by two superimposed bands at g = 2.011. The gamma dose dependence, the thermal treatments between 370 K and 500 K and the thermal decay of the two bands at room temperature, show that each band behaves in a different way thus indicating that they are associated with two different defects. Gamma dose of 10 kGy produces a TSDC band at 245 K. When the sample is maintained at room temperature, after the gamma irradiation, for several weeks, a displacement in the peak position to 290 K, is observed. Thermal treatments above 500 K destroy the 290 K band. This band is associated to at least two V-type centres.