Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbonsilver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silverplatinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process.Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity.Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.