In this study, the titanium layers from 12 to 1470 nm thick were fabricated by using the method involving dynamically changed working gas pressure (gas injection magnetron sputtering). The influence of the deposition time on the optical and electrical properties of Ti films, as well as on their microstructure, are considered. The samples are investigated by means of spectroscopic ellipsometry, atomic force microscopy, X-ray diffraction, and confocal optical microscopy. Additionally, for the Ti layers, the sheet resistance was determined. The produced coatings exhibit privileged direction of growth (002). The obtained results show a gradual increase in the mean relaxation time of free-carriers with the increase in the thickness of titanium film. However, the plasma energy exhibits maximum for the coating with the thickness of 93 nm. For such thickness, the lowest value of optical resistivity (about 200 μ Ω cm) was observed. It was found that the dc- and optical resistivity exhibit similar values for titanium films with thickness up to 93 nm. For thicker Ti layers, significant differences in resistivities (dc- and optical) were noticed. The behavior of the Drude parameter (the plasma energy), calculated optical resistivity, and discrepancies between values of optical and dc-resistivities for thicker Ti coatings can be explained as a result of the limited light penetration.