Owing to the requirements of the stable operation for mechanical components, the urgent challenges are to control tribological moisture sensitivity of protective coatings. In this letter, a-C:Si and a-C:Si:Al carbon-based coatings were successfully fabricated via magnetron sputtering Si, Al, and C. The microstructure, mechanical properties, and tribological moisture sensitivity of asfabricated carbon-based coatings were comparatively investigated. Results showed that the as-fabricated a-C:Si and a-C:Si:Al coatings were dominated by typical amorphous structure. The co-introduction of Al could effectively relax internal stress and improve adhesive strength as well as maintain the moderately high hardness for the asfabricated coating. The striking improvement in tribological moisture sensitivity of a-C:Si:Al carbon-based coating was mainly attributed to the superior mechanical properties and the formation of continuously compacted graphitized tribofilm under low relative humidity condition as well as low shear strength colloidal silica tribofilm under high relative humidity condition. The good balance between the hardness and toughness, low internal stress, and superior low tribological moisture sensitivity of a-C:Si:Al coating make it a good candidate for solid lubricating coating in engineering applications.